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DIFFUSION OF A SPARINGLY SOLUBLE GAS IN A FLOWING LIQUID FILM 

P. I. Geshev and A. M. Lapin UDC 66.071.7:532.59 

A film of liquid flowing over an inclined surface is almost always covered by waves, 
which have a substantial effect on the transfer between phases. The effect of the waves is 
most pronounced when a sparingly soluble gas is taken up by the film. The increase in the 
mass-transfer coefficient caused by the waves can be 100% or more [I, 2]. 

Several factors have been described as responsible for increasing the mass transfer in 
waves: increase in the overall phase interface area due to the waves (not more than 1% [I]), 
destruction of the inert gas layer hindering absorption by the waves (although this does not 
hinder desorption [i]), vortex motion in the gas and liquid phases [2], the presence of vigor- 
ous convective flows [3, 4], and complete mixing in the wave depressions [5]. 

The main resistance to diffusion is localized in the liquid if the gas is sparingly sol- 
uble, so diffusion in the gas can be neglected. No vortex motion has been observed up to 
Reynolds numbers of Re = 200-400 in various experiments on visualizing the flow in films [6, 
7], so the intensification is due purely to the wave mechanism [I]. 

Here we used the thin boundary-layer approximation near the free surface to obtain an 
exact solution for the diffusion in such a film. It is shown that the main factors that in- 
crease the mass transfer for two-dimensional waves are firstly that the surface velocity of 
the liquid at the wave crests approximates to the phase velocity, which leads to the inter- 
esting phenomenon of diffusion independence in the cells of liquid separated by the ridges, 
and, secondly, the vigorous transverse velocity fluctuations. 

Hydrodynamics of a Wave Film. When there are fluctuations in flow rate, one gets two- 
dimensional waves [I, 8]. The experiments of [i, 8] imply that the wavelength greatly ex- 
ceeds the average film thickness over a large range in flow rate. The longitudinal-velocity 
profile is closely approximated by a polynomial of second degree [6]: 

u(x,y, t )  _ 3 V ( x , t ) [ 2  u { ~/ ~2] - ~ h ( x , t )  ~ h ( x , t ) ]  ] ,  (1) 

where V is the film velocity averaged over the cross section; y, normal coordinate reckoned 
from the wall to the free surface; x, longitudinal coordinate; t, time; and h, instantaneous 
film thickness. 

We take the waves as stationary [i.e., h = h(x -- ct), where c is the phase velocity] 
which gives us hV = hc + const from the condition for constancy of the flow rate in the wave 
system [9]. We average this over the wavelength to determine the constant as q -- <h>c, where 
q is the average flow rate in the laboratory coordinate system and <h> is the average film 
thickness. We get for the velocity averaged over the cross section that 
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v = c - (c <h> - q)/h. ( 2 )  

With a g i v e n  f l o w  r a t e  q,  t h e  f i l m  t h i c k n e s s  i s  d e t e r m i n e d  f rom t h e  b a l a n c e  b e t w e e n  t h e  
f o r c e  o f  g r a v i t y  and f r i c t i o n  a v e r a g e d  o v e r  t h e  w a v e l e n g t h  [ t h e  l a t t e r  c a l c u l a t e d  f rom ( 1 ) ] :  

V d~. :--J+ = I ++-++ 
0 o 

(3) 

We introduce dimensionless variables: velocity V' = V<h>/q, local film thickness h' = h/<h>, 
the Reynolds number Re = q/~, and the wave phase ~' = (x -- ct)/~, when (3) becomes 

1 

q2 = ~ J  h' ~'~ " 
0 

From this, on the basis of (2), we get a formula for the ratio of the average thicknesses of 
the film with waves <h> and without waves ho for a given flow rate (Re = idem): 

<h>~ _ (! c' (h'-~)+ t d~,) ~/3, (4) 

where c' = c<h>/q is the dimensionless phase velocity. 

The dimensionless velocity of the liquid at the surface of the film is given by 

w' 3 V' 3 ( ,  c ' - - i . )  
= - f  = - F  c 17 " 

We integrate the equation of continuity to get the normal component of the velocity near 
the free surface as 

7 ) ~  V h - -  

Y 

~ dg ~-- vh - -  (y - -  h) -57"x' 
h 

where v h is the normal velocity of the film surface, which is related to the surface velocity 
w by the kinetic condition 

v h = Oh/Ot + wOh/Ox. (5) 

In what follows we use the following dimensionless variables: w' = w<h>/q, v' = v~/q, 
x' = x/~, y' = y/<h>, t' = tq/~<h>, r = <h>/% << i. 

Diffusion in a Wave Film. The diffusion coefficients for gases in liquids are usually 
very small (D ~ i0 -:~ m2/sec). This means that even very long parts of the film can be con- 
sidered in the thin boundary-layer approximation for the free surface. In that approximation, 
the dimensionless diffusion equation takes the form 

o--f-+ w - ~ 7 +  v + ( h - - g ) ~ 7 -  x -~-~y= Pes Oy ~ '  (6) 

where Pe = q/D is the Peclet number; 0 = (C -- Ch)/(Co -- Ch), dimensionless concentration; 
and Co and Ch, initial concentration (at x = O) and the surface one (at y = h). Here and 
subsequently, we omit the primes with the dimensionless quantities. The following are the 
boundary and initial conditions for (6): 

O(g = h) = O, O(x = O) = O(g = oo) = 1. (7) 

For a stationary wave we have h(x -- ct) and w(x -- ct), so it is convenient to convert 
to the new variables 

x,  ~ = x - - c t ,  z = h - - g .  (8) 

We u s e  c o n d i t i o n  (7) w i t h  t h e  v a r i a b l e s  of  (8) t o  p u t  (6) i n  t h e  fo rm 
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)0 00 dw 00 t 020 
w.~7  * (w - c) - -  z = . 

We assume that the concentration e is dependent only on one self-modeling variable q = 
z/6(x, ~), where ~ is some nominal thickness for the diffusion layer. The equations for e(~) 
and ~(x, ~) separate: 

--2qdO/dq = d~O/clq'Z; 

aS' a(~ 2 d w  ~ _ 4 (9) 
w . ~  + (w -- c) + '~ 

The solution for e that satisfies the boundary conditions of (7) is written as 

e -  dll. 
0 

(I0) 

We determine 6 = by the characteristic method. 

gives us the family of curves 

The characteristic equation in the x,~ plane 

dx/d~ = w/(w - -  c) 

% 

i x =  ? + w____%_ ~,~__cd_,  
0 

( i i )  

dependent on parameter y. Along the curve of (ii), the first term in (9) takes the form 

(w -- c) d~ a~ ~ d--~'~-7-: ; when we have multiplied all terms in (9) by w -- c, we transform the left side 

to the total derivative with respect to $. We integrate with respect to $ to get 

3 (w--c)26  ~ -  4 ( w - - c )  d ~ - F A ( ? ) .  
Pee 

0 

(12) 

The constant of integration A is dependent on parameter y, which defines the characteristic 
curve of (ii). This relationship is obtained in parametric form from (ii) and (12) with the 
initial condition ~(x = 0) = 0~ 

j '  (c - -  ,v) (13)  A 
(?) - Pe 

0 

, 

7 = / ( ~ )  = ~_--2-~-d~. ( 1 4 )  
0 

The function f(y) is defined by the integral of (14) and is monotone in c > w > 0, so 
we introduce the inverse function ~ = p(y) = f-~(y). We substitute p(y) into the upper limit 
in (13) and substitute (13) into (12); we determine y from (ii) and after obvious steps have 

p(x+/(~)) 
4 

gJ 

- ~ (c -- w) d~. (15) 52 
Pe e (c - -  w) 2 ) 

The expression for the dimensionless local mass flux follows from the solutions (i0) and 

(15): 

~ p(x+f(~)) ]--1/2 

. al �9 ( 1 6 )  
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Fig. 2 

We integrate (16) with respect to x and average with respect to ~ from 0 to 1 to get the in- 
tegral mass flux, which is usually monitored in experiments from the difference in the con- 
centrations at the film inlet and outlet [i]. However, the integration with respect to x 
can be avoided if we bear in mind that (9) can be written as 

2 _ e } 
V~e6 ~--~[~(wS) + ~ l ( u , - -  e)Sj . (17) 

After integrating (17) with respect to x and averaging with respect to ~, we get the dimen- 
sionless total mass flux, which is known in the literature as the Sherwood criterion [I]: 

1 1 

0 0 0 

The e f f e c t s  o f  t h e  waves on t h e  mass t r a n s f e r  a r e  n a t u r a l l y  e v a l u a t e d  from t h e  r a t i o  o f  t he  
total mass fluxes for films with and without waves: 

Sh [ (o-w)<] 
Sho J L 

(18) 

From (18) we can obtain certaSn general results unrelated to the particular form of w(~). At 
equally separated points x n = nf(1) (n = i, 2, ...), the ratio of (18) takes identical values. 
In fact, at these points the upper limit to the integral in (18) is p(nf(1) + f(~)) = p(f(n + 

I 

= n + ~. The inner integral in (18) is calculated as f(c--w)d~, while the ~)) outer one 
0 

is expressed in terms of f(1); as a result, we have 

1 

(S_~lo)max= k ~ S h  [21/'0 ]" ('l) S (c -- uT) (19) 

It can be shown that (19) defines the maxima in Sh/Sho. 

Note that the ratio of (19) attains arbitrary large values when w(~) attains the phase 
velocity c at a certain point. Then the f(1) appearing in (19) becomes infinite in accord- 
ance with (14). 

For x small, the upper limit in the inner integral in (18) is expanded as a Taylor 
series, from which we take only two terms, and we have for x + 0 that p(x + f($)) ~ $ + x/ 
f'(~) = ~ + (c --w)x/w, which gives 

1 

(Sh ~ ~ 2% V/~ ~" ~/~ 

0 
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From the latter expression one can obtain values somewhat less than one. 

Calculation for a Harmonic Wave. Qualitative Interpretation. In what follows we put 
everywhere that h = 1 + a cos 2~, where a is the relative wave amplitude. The integral in 
(4) is calculated by differentiation with respect to the parameter, which gives 

( h  ) i ho  = (1 - -  e a 2 ) l l ' 3 1 ( i  - -  a~) 1,'~. 

Similarly, we calculate the other integrals: 

j(t) = 

1 

6(~-~) --3, f(c--w)d~-- 3(~--I) 
g(2~ - 3) ~ - ~ o 2V t -~" 

appearing in (19). Formula (20) is expressed in a complicated way in terms of elliptic in- 
tegrals and is not given here. 

The function f and the inverse one p are monotonically increasing functions and pass 
through the origin. The integral defining f($) in accordance with (14) and all the other 
integrals in (16) and (18) are calculated by Simpson's method. 

Figure 1 shows the instantaneous local mass flux at the surface on an arbitrary scale 
along the vertical as calculated for c = 2 and a = 0.4 from (16), and it also gives curve 1 
related to the wave-free case (a = 0). We have taken an instant where the wave crests lie 
at points with integer values of the coordinate x. It is evident that the minima in the 
local mass flux occur near these points, while the maxima lie in the wave depressions. There 
is a certain displacement of the extremal points in the positive direction near the origin. 

Figure 2 shows the dependence on r for the ratio Sh/Sho calculated from (18): Curves 
1-4 have been calculated for c = 2 and a = 0.2, 0.3, 0.4, and 0.45, correspondingly, while 
curve 5 is for c = 1.7 and a = 0.2. The heights of the peaks correspond precisely to (19), 
and they lie at the points x n = nf(1), which are the points where there is a sharp reduction 
in the fluctuation'level for the local mass flux in Fig. i. 

The following is a qualitative explanation for this behavior of the curves. We trans- 
fer to the wave system, where the surface velocity is c -- w and is directed toward negative 
x. The current lines come together in the depressions and expand at the crests. The thick- 
ness ~ of the diffusion layer decreases and the local flux is maximal at points where the 
liquid flows toward the free surface. This explains the positive shift in the turning points 
in Fig. 1 at small x, where diffusion in the wave system has not yet stabilized and the ini- 
tial condition makes itself felt. 

The time to transport any part of the liquid along the surface by one wavelength is de- 
I 

termined by the integral ~d~/(c--w); if one follows an individual wave cell, then at this 
0 

instant the trough receives liquid with an elevated concentration from an adjacent trough, 
which should produce a sharp fall in the local mass flux (Fig. I). This first occurs at the 
distance defined by 

I 1 

-- c - - w  - - X l "  

0 0 

(21) 

The one in this expression is subtracted because there is a shift of one wavelength in the 
negative sense during the time of drift from cell to cell. The larger the drift time, the 
longer in x of a part in which the diffusion in the cells stabilizes (linear growth parts in 
Fig. 2). If the maximum value w = c is attained somewhere on the surface, the integral in 
(21) diverges (x, + ~) and the entire film will consist of cells separated by wave crests 
that are indendent of one another in a diffusion respect. The integral mass flux will then 
clearly be proportional to x, i~ contrast to the square-root law for a wave-free film (Sho - 
r High values of Sh/Sho obtained also for waves of small amplitude but close to the crit- 
ical value a, = 2-3/c derived from the condition w = c (for example, curve 5 in Fig. 2). 
However, the mass-transfer rate for small amplitudes is less than that for large ones (small 
slope of the linear part of curve 5 in Fig. 2). 
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The time-averaged local flux will have almost a stepped form (broken line in Fig. i) 
and, therefore, the integral flux will be almost piecewise-linear with kinks at the points 
x n = nf(1): In the wave system, these points correspond to successive instants when the 
depression receives parts of the liquid that at t = 0 were in the depressions in the suc- 
cessively more remote cells. The piecewise-linear character of Sh(x) explains the behavior 
of the curves in Fig. 2 (increase linear in /~x for Sh/Sho in the initial part, oscillations, 
and asymptote). 

Therefore, the intensification of the mass transfer in a wave cell is determined by two 
basic factors: by the amplitude and by the closeness of the liquid speed at the crests to 
the phase velocity. The transverse velocity fluctuations increase with the amplitude, which 
reduce the thickness of the diffusion layer in the depressions and markedly increase the 
local mass flux in these parts. With a given amplitude, any reduction in the phase velocity 
produces a reduction in the critical value a, and at a certain c = c, we get a = a,, and at 
the crests the liquid overtakes the waves and the cells become diffusion-independent. At 
large distances, the value of Sh/Sho in that case can be arbitrarily large. 

These conclusions evidently apply for any two-dimensional wave, and in particular for 
the so-called large-amplitude rolling waves, at the crests of which one finds w = c [6]. The 
destruction of the rolling waves, which give way to three-dimensional nonstationary forma- 
tions, should substantially reduce the mass transfer, since the isolated wave cells are elim- 
inated. This is observed in experiments on the artificial disruption of two-dimensional 
waves [i]. 

We are indebted to O. Yu. Tsvelodub for fruitful discussions and for indicating the 
way of calculating the mean thickness for a wave film. 
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